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Supplemental Material 

Agent-Based Modeling 

Agent-based modeling (ABM) is a computational approach to simulate large social 

systems.  ABM is widely employed in the social sciences, particularly within economics (e.g., 

Tesfatsion & Judd, 2006), sociology (e.g., Schelling, 1971; Granovetter, 1978), and political 

science (e.g., Axelrod, 1984).  ABM is also employed within fields such as evolutionary biology, 

epidemiology and public health, and computer science.  Use of ABM within psychology has 

been somewhat more limited, likely due to a greater emphasis on the processes that operate 

within individuals (see Goldstone & Janssen, 2005; Smith & Collins, 2009; Richie, Yang, & 

Coppola, 2014, for exceptions). At the heart of any ABM is a computational description of three 

inter-related elements: the individual agents, how those agents interact with one another, and the 

environment the agents inhabit.  Once these descriptions are constructed and initial conditions 

are specified, the model is run, allowing the system to evolve on its own. 

ABM thus consists of computational descriptions of individuals but ultimately yields 

phenomena at the aggregate level.  For this reason, ABM is particularly useful in testing 

assumptions about individuals with respect to the consequences such assumptions have on 

collective behavior.  In sociology, such linkages are sometimes referred to as micro-macro 

theories (Sawyer, 2003) and non-trivial micro-macro linkages are often referred to as emergent 

phenomena.  For many, the ability to relate separate levels of analysis represents one of the 

major strengths of ABM and makes it clear why researchers in a variety of fields have found 

value in ABM.  Economists can simulate existing markets (Bonabeau, 2002) and evaluate 

counterfactuals scenarios such as changes in existing policy.  Political scientists can evaluate 

theories of political communication and persuasion (e.g., Muis, 2010).  Sociologists can evaluate 
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the spread of trends, both beneficial (Centola, 2010, 2011) and maladaptive (Schelling, 1971; 

Granovetter, 1978). 

The goals of a specific ABM endeavor can fall into one (or more) of several categories, 

each of which could hold value within the field of psychology.  Axelrod and Tesfatsion (2006), 

for example, suggest that goals can be empirical, normative, or heuristic in nature (though there 

are undoubtedly many other potential goals).  Empirical goals would consist of investigations 

into the “how” and “why” associated with empirically observed phenomena, typically 

phenomena that exist at the level of collective behavior.  For example, people generally act in 

accordance with social norms even when doing so is personally costly.  A variety of ABM work 

(e.g., Axelrod, 1997) has gone into addressing how such regularities arise and why they persist 

even in the absence of top-down control (e.g., government policy).  Normative endeavors, in 

contrast, seek to address how to intervene on social interactions and environments so as to 

achieve particular objectives.  For example, economists might be interested in evaluating policies 

intended to encourage costly contributions to a public good (e.g., Korobow, Johnson, Axtell 

2007).  Epidemiologists might seek practices that minimize the spread of disease (e.g., Meyers, 

Newman, Martin, & Schrag, 2003). 

A third type of goal discussed by Axelrod and Tesfatsion (2006) is heuristic.  Heuristic 

ABM endeavors seek to arrive at general principles about the fundamental factors underlying 

collective patterns of behavior.  Importantly, heuristic goals do not require the ABM to be 

absolutely correct in its details.  For example, Schelling’s classic ABM model (1971) 

investigated the processes that underlie residential segregation, finding that absolute segregation 

can arise in the absence of both centralized control (e.g., without governmental policies) and 

local intent (e.g., without overly malicious preferences about racial mixing).  Schelling’s model 
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is extremely simplistic, and thus unlikely to capture the rich details of psychology of racism.  

However, the ultimate impact of the model was to demonstrate that dramatic racial segregation 

can arise as an emergent property of weak racial preferences. 

Below we provide additional details of the ABM presented in the current article, using it 

as an illustrative example of ABM more generally.  Here, we provide additional technical details, 

particularly details of the model’s implementation.  We also highlight implementation choices 

that were made and alternatives choices that could have been made.  In doing so, we hope that 

the materials provide guidance for readers unfamiliar with ABM but who might be 

contemplating its use in their own work. 

The Current Study 

Model Details 

In the current study, as with all ABMs, we specified the three elements of the model: the 

agents, their interactions, and the environment.  Because the current simulations emphasize the 

social influences on memory, our agents are essentially simple models of memory.  As with most 

computational models of cognitive processes, our agent model specifies two, inter-related 

components: the representations that allow the agents to store information and the processes that 

operate over those representations. 

Each agent has two related representations.  The first reflects the elements that may be 

retrieved and the probability with which they will be retrieved.  We refer to these as activations 

and the set of activations as the activation vector, denoted as A.  We have chosen to allow our 

agents to represent a total of 40 items, but this choice was essentially arbitrary (though it is well 

within the range used in typical behavioral experiments).  The second component of the memory 

model represents the associations between individual items.  These associations represent pre-
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experimental knowledge such as the semantic associations between words (e.g., knowing that 

“cat” and “dog” are both common pets).  These associations can be thought of as a square matrix 

(40 x 40), with the element in column i and row j representing the (directional) association 

between items i and j.  This matrix is denoted as S.  Because the current simulations do not 

directly explore the influence of pre-experimental knowledge per se, elements in S were assigned 

small, random values between –0.2 and 0.2.  As we mention in the article, S could be formulated 

to reflect more interesting prior knowledge.  For example, an experiment using categorized 

words could be simulated by constraining within-category associations (e.g., those between “cat” 

and “dog”) to be relatively high and constraining between-category associations (e.g., those 

between “cat” and “wrench”) to be relatively low. 

The processes that operate over these representations are invoked when agents engage in 

either of the two behaviors they agents possess.  These processes are discussed in the article.  

However, we briefly summarize them here to situate them within the larger description of our 

implementation.  Agents can encode items and can retrieve items.  Encoding of an item, i, 

essentially increases the activation of Ai.  However, the encoding process first reduces the 

activation of the maximally active item is first reduced if i is not the maximally active item.  

Finally, A is normalized so that A to be interpreted as a proper probability distribution.  During 

retrieval, an agent successfully retrieves an item with a fixed probability.  If retrieval is 

successful, an item is selected in proportion to the activations in A with more active items being 

more likely and less active items being less likely.  Finally, the activations in A are modified in 

response to successful retrieval. Semantic associates of the successfully retrieved item 

activations modified.  If the retrieved item was not the most active item in A, the activation of the 
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most active item as well as its semantic associates are modified.  The successfully retrieved item 

is then encoded. 

The details of the encoding and retrieval could be modified in a variety of ways.   

Implementation Details 

There are software packages specifically designed for the purposes of constructing, 

running, and analyzing ABMs (discussed below).  The simulations reported in the current article, 

however, were written in Python.  Python is a general-purpose programming language that has 

gained tremendous popularity in recent years, particularly within the field of scientific 

computing (e,g., Oliphant, 2007; Perez & Granger, 2007).  The syntax of the language is 

relatively straightforward compared to more traditional programming languages (such as C and 

Java) and thus presents somewhat less of a learning curve for new programmers (or those only 

familiar with other languages).  Furthermore, Python is an interpreted programming language, 

meaning that code can be run immediately once it is written rather than requiring a relatively 

lengthy compile-build-run cycle.  When compared to compiled languages, interpreted languages 

are typically at a disadvantage performance-wise, however, there are a variety of Python 

packages specifically designed to boost performance (see below for details).  In addition, with 

nearly limitless computational power and processing time within easy reach (e.g., Amazon Web 

Services, Microsoft Azure), the speed at which specific programming languages run is not the 

issue it once was. 

The agent model is a relatively straightforward implementation of the mathematical 

expressions described above.  The interactions that our agents engaged in differed across the 

three simulations reported in the article.  In all three simulations, agents engaged in group 

interactions with each agent in the group repeatedly taking turns throughout the interaction.  In 
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Study 1, the group interactions involved groups of three agents.  In Study 2, the group 

interactions involved groups of variable size.  Despite the large number of agents involved in the 

simulations themselves, interactions were exclusively dyadic (involving groups of two agents).  

In Study 3, we formalized the agents’ environment by specifying which agents were permitted to 

interact by describing each agent’s location within a larger social network.  Agents were only 

permitted to interact with agents they were directly connected to in the network.  These networks 

were implemented using the NetworkX package (Hagberg, Schult & Swart, 2008).  This package 

provides tools for constructing, representing, and analyzing networks.  The networks, often 

referred to as “graphs” within fields such as computer science, each describe a set of nodes 

connected by a set of edges (i.e., links).  NetworkX includes a wide array of tools for network 

analysis including standard measures of centrality, clustering, distance, and degree distributions 

among others.  NetworkX is also incredibly flexible.  It is capable of handling both directed 

networks (i.e., those with edges that “point” from node A to node B, but not necessarily from B 

to A) and undirected networks (i.e., those in which edges simply represent a non-directional 

connection).  Edges themselves can either be unweighted (e.g., representing adjacency) or 

weighted (e.g., representing a communication channel between two individuals) and nodes can 

be connected with parallel edges (e.g., semantic associations, temporal associations, etc.).  One 

of the most useful aspects of NetworkX is the fact that both nodes and edges can be associated 

with arbitrary, user-defined data.  For example, nodes could be numbers (e.g., agent ID numbers) 

or strings (e.g., the names of individuals).  Edges could be associated with categories to allow for 

multiplex networks or networks with different categories of edges (e.g., work relationships vs. 

social relationships vs. family relationships).  If the network is evolving over time, edges could 

be associated with information about when the relevant interaction occurred. 
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In the present study, NetworkX was useful for two particular reasons.  First, NetworkX 

has a variety of tools for constructing networks.  For example, there are methods for generating 

random graphs such as the “small world” networks used in Study 3 (i.e., using the 

connected_watts_strogatz_graph() function).  NetworkX also has the ability to 

instantiate several classic networks including Zachary’s karate club network (using the 

karate_club_graph() function).  The details of the co-authorship network were downloaded 

(from the UCI Network Data Repository, see below for more detail) in GML format (Graph 

Modeling Language), a file format for describing network structures.  NetworkX has the ability 

to read (and write) a variety of file formats, including GML (using the read_gml() function).  

Because the co-authorship contains several separate, unconnected subgraphs (what are known as 

components), the largest component was selected from the entire network by using the longest 

entry returned by the connected_component_subgraphs() function. 

The collaborative groups simulated in Studies 1 and 2 were also implemented as 

interactions over network structures, despite the fact that the interactions in these studies do not 

resemble what readers might think of as networks.  The networks that describe these group 

interactions are what are referred to as complete or fully connected networks (in which every 

node is connected to every other node) and are easily constructed using the 

complete_graph() function in NetworkX. 

Interestingly, NetworkX was also used in the current study to implement the association 

matrix, S, described above.  Recall that S represents the pre-experimental associations that exist 

between items.  These associations were represented as a complete network (each item had some 

association with every other item), edges were directional (i.e., the degree to which retrieving 

item A influenced the activation of B was not necessarily the same as the opposite situation), and 



DOI: 10.1177/0956797615605798 

DS8 

 

the edges were weighted (with the weights representing the strength of the association.  By 

implementing the associations as a network, associations can easily be chained together simply 

by traversing the network edge by edge (e.g., as in spreading activation). 

The last element of NetworkX that we wish to note is its ability to visualize network 

structures.  The networks depicted in Figure 4 of the article were created using NetworkX, 

although these illustrate only a small portion of NetworkX’s capabilities.  Nodes and edges can 

be plotted separately and the visual attributes (e.g., color, shape, size, transparency) of individual 

nodes/edges can be controlled.  Nodes and edges can also be labeled and the visual attributes of 

the labels can be similarly customized.  One of the most useful aspects of NetworkX’s drawing 

capabilities is the ability to construct a variety of different layouts.  A layout specifies where the 

nodes in the network are plotted relative to one another.  For simple networks, there may be 

some obvious, natural layout.  For example, for a complete, three-node network (i.e., like those 

used in Study 1 of the current article), the network is naturally plotted as an equilateral triangle.  

However, as the number of nodes grows, determining how to place nodes so as to ease visual 

comprehension becomes increasingly difficult.  NetworkX thus provides a variety of layout 

options.  These include random layouts (in which nodes are randomly arranged), circular layouts 

(in which the nodes are arranged along a circle), and, perhaps most useful, spring layouts (among 

others).  A spring layout arranges the nodes by placing them in initial positions (which are 

customizable) and then moving them as if a) nodes exert repulsive forces on one another and b) 

edges act as springs.  The algorithm then iteratively evaluates the forces acting upon each nodes, 

updates each node’s new position (the number of iterations is customizable).  The result tends to 

be a layout that makes certain features of the network quite salient.  For example, heavily 

interconnected portions of the network will tend to be arranged as densely packed subsets of 
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nodes (as can be seen in Figure 3 in the current article).  The networks in the in Figure 3 of the 

current article were constructed by first constructing a random layout and using this layout as the 

initial positions in the subsequent construction of a spring layout.  This combination seems to 

provide reasonable layout, with nodes arranged to easily visualize their place in the larger 

network, but with the network itself occupying a reasonably compact, regular (e.g., circular) 

space. 

ABM Literature 

Here, we provide a brief overview of literature on ABM.  This section should be taken as 

a starting point for curious readers unfamiliar with ABM rather than as an exhaustive review.  

The general topic has been covered in substantially greater detail and depth elsewhere and points 

to such resources are included.  Before diving into the literature itself, it is important to note two 

related points.  First, the terminology used in discussing ABM is diverse.  Some, as in the current 

article, refer to agent-based modeling (ABM), but others instead prefer terms such as agent-

based modeling and simulation (ABMS), or multi-agent systems (MAS).  There are also 

disciplinary differences in terminology.  For example, the term agent-based computational 

economics (ACE) allows researchers to distinguish such approaches from more traditional 

approaches within the field of economics.  Second, how ABM is employed varies across 

disciplines.  ABM is an approach that makes it inherently attractive to researchers in a variety of 

disciplines.  However, each of these disciplines brings a different perspective on what value 

ABM provides, what answer ABM is best suited to provide, and the how ABM (and/or 

computational modeling more generally) fits into the discipline.  For this reason, there is wide 

variability in how ABM studies are reported across disciplines.  As just one obvious example, 
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ABM reported in computer science might include little discussion about ABM as an approach, 

whereas similar articles in anthropology might include greater justification of their methods. 

We would point readers unfamiliar with ABM to the variety of general texts available.  

These would include Epstein and Axtell (1996), Gilbert and Troitzsch 

 (2005), and Shoham and Leyton-Brown (2008).  For a more compact overview, we might 

suggest Macal and North (2006) or Bonabeau (2002).  For more of a conceptual overview of 

how ABM is of use within psychology, readers might consider Goldstone and Janssen (2005) for 

a somewhat more cognitive psychological perspective, Smith and Collins (2009) for a somewhat 

more social psychological perspective, or Richie, Yang, & Coppola, (2014) for an application in 

the context of language.  If readers are instead looking for further examples of ABM as it has 

been applied to specific research questions, we would strongly suggest Schelling (1971), Axelrod 

(1997), and Carley (2002). 

We would also like to make special note of Tesfatsion & Judd (2006).  This is a large, 

edited volume that contains a variety of perspectives on how ABM can be applied, largely in the 

field of economics.  The chapters include both descriptions of various applications, but also 

historical perspectives on how the field has evolved.  One of the most useful parts of this volume 

is the appendix, entitled “A guide for newcomers to agent-based modeling in the social sciences” 

(Axelrod & Tesfatsion, 2006).  This guide includes discussion of the “whys” and “hows” of 

ABM as well as its own reading list. 

 

ABM-related Software 

Python 
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Python itself can be downloaded from python.org.  However, the true power of Python 

ultimately lives in the thriving ecosystem of packages written by independent developers.  These 

packages are typically distributed freely by the developers themselves and can be installed 

individually.  However, it is likely more straightforward to instead use a more full-featured 

Python product, one that comes with both a base installation of Python as well as a large number 

of individual packages.  One major advantage of these sorts of products is that the various 

interdependencies between packages will have been sorted out by the developers and will thus 

require little effort on the part of the user.  Such products include Canopy, developed by 

Enthought (enthought.com) and Anaconda, developed by Contiuum (continuum.io).  There are 

also similar products available from others (including Python(x,y)). 

Regardless of how Python is acquired, there are specific packages that would be of 

particular interest to researchers engaged in ABM.  These would include scipy (scientific tools, 

including statistical methods), numpy (numeric tools), NetworkX (the previously mentioned 

package providing a variety of network-related tools).  There are also many packages that are 

more generally useful in scientific computing roles.  These would include matplotlib and seaborn 

(both including plotting tools), pandas (spreadsheet-like data structures).  IPython is also 

extremely useful in scientific contexts, allowing for interactive code to be written and the results 

(and code) to be saved for later distribution (e.g., to collaborators).  As mentioned above, there 

are also tools that aim to increase the computational performance of Python.  These would 

include Cython, Numba, and PyPy. 

ABM-Specific 

This section lists other software tools that are specifically intended to construct, run, and 

analyze agent-based models.  These tools are potentially less flexible than a model implemented 
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in a generic programming language (e.g., Python), but will ultimately be less intimidating for 

those with little programming experience.   

- NetLogo: Probably one of the more common packages for implementing ABMs.  The 

software allows models to be constructed and the interface provides the ability to 

visualize the model behavior and can provide access to model parameters so that they 

can be tweaked as the model is running. 

- FLAME (Flexible Large-scale Agent Modeling Environment): Flame occupies a 

niche similar to Swarm (see below).  Models consist of components (agents, agent 

interactions, environments, etc.), each of which can be constructed as the research 

wishes.  Models are specified in XML (and thus do not require “programming” in the 

traditional sense) and thus should be more accessible to those with less programming 

experience. 

- Swarm: Developed by the Sante Fe Institute, Swarm represents a middle ground 

between a generic tool like Python and an ABM-specific tool such as NetLogo.  

Models consist of components (agents, objects, organizations, time, space, etc.), each 

of which can be specified as the researcher wishes.  The software does require 

programming (C or Java), but comes with tutorials and example code to get new users 

started. 

- Cellular Automaton Explorer: This is a convenient interface to build, explore, and 

visualize cellular automata (simple ABMs).  Frequently used for teaching purposes, 

cellular automata are convenient for demonstrating the complex emergent properties 

that can emerge from simple, interacting components.  There are several 
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implementations of this, including a popular one from Wolfram 

(demonstrations.wolfram.com/CellularAutomatonExplorer). 

- OpenABM (openabm.org): OpenABM.org represents a clearinghouse for ABM 

models, news, and information.  Of particular interest is the model library, which 

collects models, many of which are implementations of models described in 

previously published papers.  Each entry in the library has downloadable versions of 

the model itself as well as information about its construction, authorship, and any 

associated publications.  The library also provides the ability to cite the model 

directly.  The library includes models implemented in a variety of languages and is 

thus a good place to start for those new to ABM. 

Network-Related Resources 

Network Data Sets 

This list represents a small sample of repositories making network-related data freely 

available.  The co-authorship network used in the current study was obtained from the 

first resource in the list. 

• http://networkdata.ics.uci.edu/ 

• http://networkrepository.com/ 

• http://vlado.fmf.uni-lj.si/pub/networks/data/ucinet/ucidata.htm 

• http://vlado.fmf.uni-lj.si/pub/networks/data/ 

Network Analysis and Visualization Software 
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As with the network-related data resources listed above, the network software packaged 

listed below is by no means exhaustive.  However, these represent some of the most 

popular packages and will thus allow for loading/analyzing/visualizing many of the 

network-related data listed above. 

• UCINet (sites.google.com/site/ucinetsoftware/home) 

• Graphviz (graphviz.org) 

• Gephi (gephi.github.io) 

• Pajek (mrvar.fdv.uni-lj.si/pajek) 
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