
Enhanced Error Decoding from Error-Related Potentials using
Convolutional Neural Networks

Juan M. Mayor Torres1, Tessa Clarkson2, Evgeny A. Stepanov3, Christian C. Luhmann2,
Matthew D. Lerner2, and Giuseppe Riccardi3

Abstract— Error-related potentials are considered an impor-
tant neuro-correlate for monitoring human intentionality in
decision-making, human-human, or human-machine interac-
tion scenarios. Multiple methods have been proposed in order
to improve the recognition of human intentions. Moreover,
current brain-computer interfaces are limited in the identifi-
cation of human errors by manual tuning of parameters (e.g.
feature/channel selection), thus selecting fronto-central channels
as discriminative features within-subject. In this paper, we
propose the inclusion of error-related potential activity as a
generalized two-dimensional feature set and a Convolutional
Neural Network for classification of EEG-based human error
detection. We evaluate this pipeline using the BNCI2020 – Mon-
itoring Error-Related Potential dataset obtaining a maximum
error detection accuracy of 79.8% in a within-session 10-fold
cross-validation modality, and outperforming current state of
the art.

I. INTRODUCTION

Error-related potentials are electrophysiological event-
related potentials (ERPs) that occur after an individual re-
alizes an error has been made. They are generated in the
anterior cingulate cortex (ACC) [1] and are important electro-
physiological biomarkers for studying human intentionality
[2], [3]. The error-related potential (ErrP) is a group of EEG
stimulus-locked waveforms associated with the elicitation of
self/others erroneous trials. ErrPs occur around 50-100ms
after the commission or realization of an error has been
made, though they vary slightly in latency and amplitude.

One particular example of ErrP is the ERN [4] measured
during fast Go-Nogo and Flanker tasks and is a neural
response associated with the commission of an error by
the individual. Alternatively, the FRN is measured during
interactive tasks such as reward-seeking [3] and decision-
making [5]. In general an ErrP is elicited after self/other
erroneous trial has been perceived by the participant [1], [6].
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However, despite the substantial amount of studies as-
sociating ErrP with erroneous trial processing, Brain Com-
puter Interfaces (BCI) have not included generalized enough
pipelines that can outperform the current ErrP-based error
decoding pipelines [7], [4], and overcome the incidence
of ErrP inter-trial and inter-subject variability [8]. Most
pipelines perform an off-line pre-selection of the most dis-
criminative channel or a set of channels to obtain better
error decoding accuracy. This process implies a feature
imbalance within-subject and poor generalization between
subjects. Thus, ErrP-based classification of erroneous trials is
a high demanded problem in neuroscience [1], [6], requiring
better processing of ErrP single trials.

In this paper, we propose a novel pipeline for error/correct
trials decoding using ErrP activity as a 2D feature set
representation for training a deep Convolutional Neural Net-
work (ConvNet). This pipeline does not require the selection
of different set of fronto-central channels per subject but
successfully outperforms current state-of-the-art methods for
error decoding. We evaluate this new pipeline on the Mon-
itoring Error-Related Potential dataset and using the same
feature representation per trial in a within-session 10-fold
cross-validation per subject modality.

II. METHODOLOGY

Figure 1 shows the complete error decoding pipeline
with its corresponding subtasks: (1) Artifact Removal, (2)
Whitening, (3) Cropping, and (4) A 2 Convolution-Pool
Stages ConvNet. In the next subsections, we will describe
the pipeline sub-processes in detail.

A. BNCI2020: Monitoring Error-Related Potential dataset

This pipeline was evaluated using the Monitoring Error-
Related Potential dataset described in [1] as a part of the
BNCI20201 initiative. This dataset is composed of a group
of EEG stimulus-locked recordings elicited by a moving
cursor (green square) and a randomly positioned target screen
(red square). Six healthy participants attempted to guess the
position of a target controlled by an artificial agent. A trial
was considered erroneous if the agent’s cursor was not in
the same position as the random target. Trials on which the
agent’s cursor reached the target position were considered
correct. After correct trials the target position randomly
changes positions at least 3 slots away from the last moving
cursor position.

1http://bnci-horizon2020.eu/database/data-sets
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Fig. 1. Error decoding pipeline using ErrP neural activity and a ConvNet classifier. This pipeline is composed of (1) The construction of the channels x
time-points 2D ErrP feature representation, (2) the preprocessing pipeline composed by sub-tasks such Artifact Removal, ZCA Whitening, and Cropping,
and (3) The ConvNet classifier with 2 Convolutional - maximum Pooling stages. A final argmax layer is used for computing the Error and Correct class
posteriors.

Fig. 2. Figure 2.A and 2.B show the complete set of grand-average, and subjects average for session 1 and session 2 data respectively. ErrP FCz grand-
average average neural activity are shown in blue and the average for each subject in red. The topo-plot added on the top shows the average amplitude
between 260 and 320 ms.

This procedure was repeated in ten 3-min blocks, yielding
64 2,000ms trials each. Each participant completed the task
twice, weeks apart (M = 38.97 weeks, SD = 41.09)
to examine different error probabilities. For each session
the agent error probability Perr was programmed in two
modalities Perr = 0.2 and Perr = 0.4 for balancing the
number of erroneous occurrences per subject, but only 4
out of six subjects took session 2 for Perr = 0.4. In
our experiments we used data from Perr = 0.2 given the
unbalanced amount errors and correct trials included in this
subset. Grouping the data for all subjects the first session
yielded 665 errors and 2,442 correct trials, and the second
session yielded 657 errors and 2,673 correct trials. EEG
data was recorded at 512 Hz using a 64 channels Biosemi
ActiveTwo device.

Figures 2.A and 2.B show the Error-Correct FCz average
waveform for session 1 and 2 respectively. Averaged topo-
plots are also added in Figures 2.A and 2.B showing the
corresponding Error-Correct average neural activity between
260 and 320 ms.

A significant difference between error and correct is found
subtracting between Error/Correct individual average wave-
forms. This difference is evident at fronto-central region,
especially FCz (F (1, 11) = 7.78, p < 0.001) and Cz
(F (1, 11) = 6.55, p < 0.001). However, this difference

is not observed using a RM-ANOVA between sessions –
Perr = 0.2 (F (1, 23) = 0.122, p = 0.353). With a clear
confirmation of a statistical difference between error and
correct neural activity we design this novel ConvNet based
pipeline for EEG single-trial error decoding using ErrP
features, in order to discriminate systematically this Error-
Correct difference.

B. Pre-Processing

The ConvNet pipeline and all the baseline classifiers
(Section II-C) received an epoched EEG training subset after
the Artifact Removal process. Whitening and Cropping are
only used as a pre-emphasis for the ConvNet classifier.

1) Artifact Removal: This process is composed of the exe-
cution of two EEGlab plugins in a sequence. First, we use the
Koethe’s clean raw function from PREP pipeline [9] using
Artifact Subspace Removal (ASR) for bad channel removal.
After bad channels are removed we used interpolation for
infer the new neural activity from the 4 nearest channels.
Second, we use ADJUST [10] for removing eye blinking
and movement artifacts using spatio-temporal high order
statistics. ADJUST uses Independent-Components Analysis
(ICA) to evaluate all the possible artifactual independent-
components (IC) that constitute each ErrP trial. The non-
artifactual IC selection is implemented based on high-order
spatio-temporal features.

361



2) Whitening: The cleansed feature set is normalized
using a ZCA whitening process. Following [11], the ZCA
processes each Error/Correct trial per batch, implementing
(1) a subtraction between the EEG trial representation and
its corresponding average and (2) a Principal Component
Analysis (PCA) Singular Value Decomposition SVD task
described in Equation 1.

XZCA = λTr(
1√

Tr(S) + ε
)ΣXλT (1)

ErrP trial X is normalized and transformed into the ZCA 2D
feature representation denoted as XZCA using the covariance
matrix , the rotation matrix λ extracted from the initial SVD,
and the eigenvector matrix S.

3) Cropping: In this step, for each ConvNet training
iteration and for each fold, we randomly crop a 64x64 size
feature set varying the center position across the training
iterations. Previous implementations [2], [11] assert that this
process reduces the probability of identifying a false training
local minima.

C. Baseline Classifiers: Gaussian, SVM, DBN, Majority
Voting

We propose a group of baseline classifiers to assess our
ConvNet-based pipeline. The classifiers we used include
Gaussian [1], a linear Support Vector Machine (SVM) [4],
and a 2-layer Deep Belief Network (DBN). These classifiers
represent generative alternatives to establish a fair compar-
ison with robust discriminative classifiers introduced here,
such as ConvNets.

We use the same parameters described in [1] for the
Gaussian classifier such as learning rates of 0.001 and 0.0001
for computing the covariance per class. From [4] we set the
linear kernel SVM with a regularization parameter C = 1.
We train a 2 hidden-layer DBN composed by 20 units in
the first hidden layer and 100 in the second. All hidden
units’ activation functions are sigmoid except for softmax
output layer’s units. The training method is composed of a
Contrastive Divergence (CD) with 100 iterations pre-training
and complemented with a subsequent 2,500 iterations fine-
tuning training [12], [13]. Pre-training learning rate is set
in 0.01, and fine-tuning learning rate is set in 0.15 with a
weight decay factor of 0.0001 per iteration.

The majority voting strategy is simple rule of argmax
majority voting learner dividing the decision probabilities
evenly across Gaussian, SVM and DBN classifiers.

D. Deep 2-conv/pool stages ConvNet: FCz and Cz channels,
and 64 channels

The ConvNet classifier illustrated in detail on Figure 1
is initially set with random distributed weights for all the
Conv-Pooling stages. The first ConvNet stage is composed
of one Convolutional layer with 128 filters 64x64 each,
and a subsequent 5x5 max pooling layer. The corresponding
features obtained after pooling are sub-sampled with a factor
of 2. In the second stage, a similar scheme was set using a
reduced number of convolutional filters (64), each with a

TABLE I
AVERAGE ACCURACY FOR ERROR AND CORRECT TRIALS

CLASSIFICATION. PER CLASSIFIER ACCURACIES ARE REPORTED FOR

SESSIONS 1 AND 2 RESPECTIVELY.

Classifier Error Correct
Session 1: Perr = 0.2

Gaussian 0.619 0.771
SVM 0.621 0.781
DBN:20-100 0.631 0.786
Majority Voting 0.627 0.792
ConvNet: FCz, Cz 0.721 0.813
ConvNet: 64 ch 0.798 0.844

Session 2: Perr = 0.2
Gaussian 0.616 0.762
SVM 0.583 0.779
DBN:20-100 0.616 0.766
Majority Voting 0.625 0.784
ConvNet: FCz, Cz 0.678 0.804
ConvNet: 64 ch 0.751 0.838

10x10 kernel size. The subsequent maximum pooling layer
is 2x2 with another striding factor of 2.

Following [2], we use exponential linear units (ELU) as
activation functions in all the stages except for the fully-
connected layer in which we use a step function. The 64x64
cropped feature sets are assigned randomly into a mini-batch
of size 120, thus changing the cropping location across the
training iterations. We use a learning rate of 0.0001 and
train each subject for both Perr = 0.2 sessions with 1,200
iterations using a weight decay factor of 0.002.

The ConvNet uses features from (1) a 2x563 image wrap-
ping up the ErrP neural activity from FCz and Cz channels,
and (2) 64x563 representation grouping the features for all
the 64 channels per trial. For the two channel case, we change
the height of the convolutional filters from 20 to 2 in the
first stage, and from 10 to 1 in the second stage. Therefore,
the pooling layers are 1x5 and 1x1 respectively; the sub-
sampling is applied only for the first stage. A final two-
unit argmax layer is used to compute the Error and Correct
classes’ posterior probabilities.

III. RESULTS

For evaluating the ConvNet pipeline we use two different
sets of features: (1) A 2x563 image wrapping up the features
from FCz and Cz channels, and (2) 64x563 representation
grouping the features for all the 64 channels per trial. Results
of the classification experiments are presented in Table I
and Figures 3.A and 3.B. From Table I we can observe
that ConvNet models outperform the other classification
algorithms – Gaussian, SVM, DBN, and their majority voting
ensemble. Among the two ConvNet models, the 64-channel
model yields superior performances for both correct and error
classes across the six subjects. Figures 3.A and 3.B, on the
other hand, present the error trial classification accuracy,
using error/correct data from session 1 and session 2 as a
test-set. Standard deviations are reported in the legends.
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Fig. 3. Average accuracy for Erroneous trial classification in 10-fold within-session cross-validation modality. Figure 3.A shows the results for session 1 as
test set, and Figure 3.B shows the results for session 2 as test set, both Perr = 0.2. These results are wrapped up per subject analyzing classifiers such as
Gaussian classifier proposed in [1], the linear SVM proposed in [4], the DBN proposed in this study, a majority voting strategy grouping the decision-level
of Gauss, SVM and DBN classifiers, and two ConvNet settings using features from FCz and Cz channels, and the complete set of 64 channels.

IV. CONCLUSION

ErrP is not only a group of early and late deflections
statistically related to erroneous trial decoding, but is also
considered an important set of features. Re-arranging ErrP
features into a 2D representation for training a deep ConvNet
architectures yields considerable results in error single trial
decoding. The ZCA whitening and the random cropping are
critical complements for the ConvNet training/testing and the
ErrP single trial representation construction.
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